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Introduction 



Go gle "big data" OR "machine l'earning" 

All News Images Videos 

About 99,900,000 results (0. 75 seconds 
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LOTS OF BIG DATA 

Big data is big news! 
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Although I guess that’s not so surprising...

Go gle "president trump" 

All News Images Videos 
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TRUMPS TRUMP 

Almost twice as popular as “President Trump”! 
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FAKE NEWS 

But big data analysis doesn’t mean better data analysis 
I More variables 
I More outliers 
I More noise 
I More spurious results 

Conclusion? 
I Data needs to be cleaned 

We will discuss data anomalies and methods for cleaning data 
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Symptoms 
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THE DATA 

We worked with credit default swap (CDS) spread data 
I Spread = cost (in bp) of insuring against default of a given company 

for a given time period 
I Quoted for 6 month, 1 year, 2 year, 3 year, 5 year, 7 year and 10 

year horizons 
I Quoted for 1,000s of different individual companies 
I Quoted both for senior and subordinated debt 
I Consider market close data 
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EXAMPLE 
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DATA ISSUES 

General data quality issues 
I Missing values 
I Bad values 

Clean for a purpose 
I Relative valuation 
I Mark to market 
I Trading strategy development 
I Risk analysis 

Risk 
I Missing data points 

I Problematic return calculations 
I Problematic covariance calculations 

I Bad values 
I Bad returns 
I Bad variances 
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CDS DATA ISSUES 

CDS data specific characteristics: 
I 6 month point missing for first 2.5 years 
I Often large range of values 
I High volatility makes detecting bad values difficult 
I Data used for risk analysis 

I Deleting outliers reduces risk measures 
I Leaving anomalies inflates risk measures 
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TYPICAL APPROACHES 

Hole filling 
I Regression 
I Interpolation 
I Flat filling 

Anomaly detection 
I Comparison to trailing volatility 
I Cluster analysis 
I Neural networks 
I Statistics-sensitive Non-linear Iterative Peak (SNIP) clipping 

algorithm 
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OVERVIEW 

Hole filling Overview 
I Use Multi-channel Singular Spectrum Analysis (MSSA) hole filling 

algorithm 
I Variant of Singular Spectrum Analysis (SSA) used simultaneously on 

multiple time series 
I Decomposes each time series into a sum of components, one for 

each eigenvector 
I Borrowed from geophysical data analysis 
I Makes use of both space relationships (covariance) and time 

relationships (autocovariance and cross-autocovariance) 
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SSA 
Uses: 

I Inspect eigenvectors and components to extract specific features of 
data 

I Smooth data by throwing away small eigenvalues 
I Helpful for stabilizing correlation calculations (smooth data then 

compute) 
References: 

I A beginner’s guide to SSA, Claessen and Groth, [CG] 
I Singular spectrum analysis, Wikipedia, [Wik16] 
I Analysis of Time Series Structure: SSA and Related 

Techniques, Golyandina, Nekrutkin, and Zhigljavsky, [GNZ01] 
I A review on singular spectrum analysis for economic and 

financial time series, Hassani and Thomakos, [HT10] 
I SSA, Random Matrix Theory, and Noise-Reduced Correlations, 

Dash et al., [Das+16a] 
I Stable Reduced-Noise ’Macro’ SSA–Based Correlations for 

Long-Term Counterparty Risk Management, Dash et al., 
[Das+16b] 
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MSSA 

Multi-channel Singular Spectrum Analysis (MSSA): 
I Applies SSA algorithm to a set of time series simultaneously 

Uses: 
I Same as SSA, but takes relationships between different time series 

into account 
I Used for forecasting 

References: 
I Multivariate singular spectrum analysis for forecasting 

revisions to real-time data, Patterson et al., [Pat+11] 
I Multivariate singular spectrum analysis: A general view and 

new vector forecasting approach, Hassani and Mahmoudvand, 
[HM13] 

I Advanced spectral methods for climatic time series, Ghil et al., 
[Ghi+02] 
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MSSA BASED HOLE FILLING 

MSSA hole filling algorithm: 
I Nominally fill holes (e.g. via interpolation) 
I Use level l hole filling algorithm for l = l0: 

I Run MSSA algorithm 
I Replace holes with MSSA reconstruction using l biggest singular 

values 
I Repeat until convergence 

I Increment l by one and repeat until adding singular values doesn’t 
have much impact and used enough singular values 

References: 
I Spatio-temporal filling of missing points in geophysical data 

sets, Kondrashov and Ghil, [KG06] 
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MIXED RESULTS 
Unfortunately, it doesn’t always work: 

03/07 05/07 07/07 09/07 11/07 01/08
-10

0

10

20

30

40

50

60

70

80
NAB Senior USD: Original MSSA hole filling

6mo

1yr

2yr

3yr

4yr

5yr

7yr

10yr

16 



Bloomberg 

OBSERVATIONS 

Observations: 
I Sometimes MSSA doesn’t line up with actual data 
I Sometimes MSSA bottoms out 
I Using too few singular values will smooth the data 

Solutions: 
I Anchoring – patch in data in a more consistent fashion 
I Reparameterization – working in log space 
I Adjusting MSSA parameters 
I Avoid filling large gaps 
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ANCHORING 

Holes are replaced with MSSA partial reconstruction 

I Can yield bias if remaining components shift results 

Instead 
I Patch in differences relative to endpoints 
I Can be additive or multiplicative 
I One-sided holes need special treatment 
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REPARAMETERIZATION 

MSSA hole filling is like a fixed point algorithm 
I Trying to find points which match reconstruction 
I Similar to constrained optimization 

Apply classic optimization techniques 
I Transform problem to eliminate constraints 
I Work in log space if values must be positive 
I Log space also helps to handle changes in magnitude 

Fast drop-off of eigenvalues is evidence that working in log space is 
the right thing 
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ADJUSTING MSSA 
PARAMETERS 

Many parameters to adjust 
I Lag 
I Max/Min number of EVs 
I Max/Min percentage of sum of EVs 
I Measure of convergence 

Smoothing caused by fast drop-off of EVs 
I Max/Min percentage ineffective 
I Can add more EVs, but leads to instability 
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NEW RESULTS 
After adjustments NAB: 
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BAD DATA 

How to handle bad data? 
I Detect it 
I Remove it 
I In our case, replace it 
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BAD DATA DETECTION 

Many algorithms 
I Statistical – compare to statistical properties (like trailing SD) 
I Data science – clustering 
I Neural networks 

References 
I Outlier Detection Techniques, Kriegel, Kröger, and Zimek, [KKZ10] 
I Detecting Local Outliers in Financial Time Series, Verhoeven and 

McAleer, [VM] 
I Outlier Analysis, Aggarwal, [Agg13] 
I Algorithms for Mining Distance-Based Outliers in Large Datasets, 

Knorr and Ng, [KN98] 
I Data Mining and Knowledge Discovery Handbook: A Complete 

Guide for Practitioners and Researchers, Ben-Gal, [BG05] 
I An online spike detection and spike classification algorithm capable of 

instantaneous resolution of overlapping spikes, Franke et al., [Fra+10] 
I A Survey of Outlier Detection Methodologies, Hodge and Austin, 

[HA04] 
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DIFFICULTIES 

Regime changes and changing volatility 
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HYBRID APPROACH 

Data science approach – Cluster analysis 
I Angle-based 
I Distance-based 

Hybrid approach 
I Run clustering on a windowed basis (in a neighborhood of each 

point) 
I Combine MSSA with clustering 
I Remove points using analysis, then put them back if MSSA 

reconstructs them close enough 

Conservative approach 
I Do both angle and distance-based combined with MSSA 
I If both algorithms agree, then it’s really an anomaly 

25 



. · ... 

Bloomberg 

DISTANCE-BASED EXAMPLE 
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ANGLE-BASED EXAMPLE 

Angle-based, no outlier: 
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ANGLE-BASED EXAMPLE 

Angle-based outlier: 
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RESULTS 
Filling of large holes 
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RESULTS 
Ignoring regime changes 
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RESULTS 
Detecting and correcting bad data 
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RESULTS 

Even works on CMO OASs! 
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SUMMARY 

Moral of the story 
1. Know your data! 

I Bad data = bad results 
I Big data increases need for data cleaning 
I Look at your data! 

2. Know its usage! 
I Cleaning must respect usage of data 

3. Algorithms will often not work as advertised! 
I Your data can be different 
I Your data usage can be different 

4. Expect substantial work modifying and adjusting algorithms 
I Tuning 
I Modifying algorithms 
I Combining algorithms 
I Performance must be inspected 
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Thank you! 

Harvey J. Stein 

hjstein@bloomberg.net 

© 2018 Bloomberg Finance L.P. All rights reserved. 
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